Overview
GeoJSON is a data-interchange format for a variety of geographic data structures. GeoJSON can be used to represent geometry, a feature or a collection of features. The geometry types supported in GeoJSON are Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection, and Box. Features in GeoJSON are geometry objects with additional properties. A geometry collection represents a list of geometries and a feature collection represents a list of features.

[image: image1.emf]Geometry

Point LineString Polygon GeometryCollection

MultiPoint MultiLineString

MultiPolygon

1

-element *

1

-element *

1

-element *

1

-element

*

Box

Figure 1: Inheritance and substitutability of geometry types
A complete GeoJSON data structure is always an object (in JSON terms). In GeoJSON, an object consists of a collection of name/value pairs - also called members. For each member, the name is always a string. Member values are either a string, number, object, array or one of the literals: true, false, and null. An array consists of elements where each element is a value as described above.

Definitions
· JavaScript Object Notation (JSON), and the terms object, name, value, array, and number, are defined at http://json.org/

· The terms may, should, and must are defined at http://www.ietf.org/rfc/rfc2119.txt

Specification
GeoJSON always consists of a single object. This object (referred to as the GeoJSON object below) represents a geometry, feature, collection of geometries, or collection of features.

1) The GeoJSON object may have any number of members (name/value pairs).

2) The GeoJSON object must have a member with the name "type". This member's value is a string that determines the type of the GeoJSON object.

a) The value of the type member must be one of: "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", "GeometryCollection", "Box", "Feature", or "FeatureCollection". "type" must be lower case, the case of the type member values must be as shown here.

b) A geometry entity is a GeoJSON object where the type member's value is one of: "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", "GeometryCollection", or "Box". The case of the type member values must be as shown here.

(i) In addition to the type member, any GeoJSON object that represents a single geometry (referred to as a geometry object below) must have a member with the name "coordinates". This does not apply to geometry objects of type "GeometryCollection" or any of its subtypes. The value of the coordinates member is always an array (referred to as the coordinates array below). The structure for the elements in this array are determined by the type of geometry.

1. For type "Point", the array is three-long, and
 each element in the coordinates array is a number representing the point coordinate in one dimension. The order of elements follows x, y, z order (or latitude, longitude (each in decimal degrees) elevation (in meters) for coordinates). The interpretation of a point is the single location described by the coordinate

.
2. For type "MultiPoint", each element in the coordinates array is a coordinates array as described for type "Point". The geometric interpetation of a MultiPoint is the set of point elements as described in the array.
3. For type "LineString", each element in the coordinates array is a coordinates array as described for type "Point". The coordinates array for a LineString must have two or more elements. The geomtric interpretation of a LineString is the set of points along the straight line segment joining any 2 consecutive points in the coordinate array. A LinearRing is a special case of type LineString where the first and last elements in the coordinates array are equal (they represent the same point), and there must be at least three non-co-linear points so that the enclosed polygon is not degenerate. Further, the ring must not self intersect (cross or self tangent) except for the endpoints
. Though a LinearRing is not explicitly represented as a GeoJSON geometry type, it is referred to in the Polygon geometry type definition.

4. For type "MultiLineString", each element in the coordinates array is a coordinates array as described for type "LineString". The geometric interpretation of a MultiLineString is the point-set union of all of its contained LineStrings
.
5. For type "Polygon", each element in the coordinates array is a coordinates array as described for type "LineString". Furthermore, each LineString in the coordinates array must be a LinearRing. For Polygons with multiple LinearRings, the first must be the exterior ring and any others must be interior rings or holes. The exterior ring must be oriented counterclockwise when viewed from above; the interior rings must be oriented clockwise when viewed from above. The rings must not cross one-another but may be tangent to one another. The described polygon is the area interior to the first ring and exterior to all other rings. An interior ring that surrounds or is at most tangent to another interior ring is redundant and may be removed from the representation without any change of interpretation. For completely independent interpretations, all rings in a polygon should be co-planar. If not, then the "interiors" of each ring must be intepreted as lying on a "terrain" surface defined elsewhere. This relationship logic may be handled internal to the application
.
6. For type "MultiPolygon", each element in the coordinates array is a coordinates array as described for type "Polygon". The geometric interpretation of a MultiPolygon is the point-set union of all of its contained Polygons.
7.
8. A GeoJSON object with type "GeometryCollection" is a geometry object which represents a collection of other geometry objects (potentially including other instances of GeometryCollection or subtypes of GeometryCollection.

a. An object of type "GeometryCollection" must have a member with the name "geometries". The value corresponding to "geometries" is an array. Each element in this array is a geometry object as defined above, or be another GeometryCollection.

9. The interpretation of a GeometryCollection is the set union of the points on the members of the collection when interpreted as described above
c) For type "Box", which is not actually a geometry, the coordinates array must have exactly two elements. Each element in the coordinates array is a coordinates array as described for type "Point". The first element in the array represents the minx, miny corner of the box, and the second point represents the maxx, maxy corner of the box. The z values may be ignored or absent
.

d) A GeoJSON object with the type "Feature" represents a collection of descriptive properties
 (referred to as a feature object below).

1.
2. A feature object must have a member with the name "properties". The value of the properties member is an object (any JSON object).

e) A GeoJSON object with the type "FeatureCollection" represents a collection of feature objects.

1. An object of type "FeatureCollection" must have a member with the name "features". The value corresponding to "features" is an array. Each element in the array is a feature object as defined above.

3) A GeoJSON object without a member named "crs" contains geometries in a geographic coordinate reference system, using the WGS84 datum, and with units in decimal degrees for latitude (x) and longitude (y), and optionally meters (z) above the geoid. A GeoJSON object may have a member with the name "crs". If a GeoJSON object has a member named "crs", it is assumed to represent the coordinate reference system of the included geometry or geometries.

i) The value of a member named "crs" must be an object. This object must have at least two named members: "type" and "properties". The value of the member named "type" must be a string. The value of the member named "properties" must be an object. This specification defines no further requirements for the structure of these objects. Instead, a convention is offered.

ii) To use EPSG codes to describe coordinate reference system, the "crs" member should have the following structure: "crs": {"type": "EPSG", "properties": {"code": 2805}}. "crs", "type", and "properties" must be lower case. When used as a value, "EPSG" must be upper case.

(1) EPSG codes must not be used if 1) the EPSG-defined axes order of the crs is not lon, lat
(for a geographic crs) or easting, northing (for a projected crs), or 2) the EPSG-defined coordinate representation of a geographic crs is not decimal degrees (e.g. if is degrees/minutes/seconds). Instead, such data should use OGC URNs that specify the ordering to be lon, lat (or easting, northing) and/or the coordinate representation to be decimal degrees.

(a) To use an OGC URN (http://portal.opengeospatial.org/files/?artifact_id=16339) as a unique identifier of a coordinate reference system, the "crs" member should have the following structure:

(i) The "type" member must be "OGC".

(ii) The properties member must be an object with one member, "urn", that specifies an OGC URN such as "urn:ogc:def:crs:OGC:1.3:CRS84".

(iii) The URN "urn:ogc:def:crs:OGC:1.3:CRS84" should be used in place of EPSG:4326 to indicate decimal degrees using the WGS84 datum in lon, lat order: the CRS object in this case would look like: {"type":"OGC", "properties": {"urn":"urn:ogc:def:crs:OGC:1.3:CRS84"}}

(iv) Unless your data falls under one of the exceptions above, you should prefer EPSG codes to OGC URNs.

(b) To use a URL as a unique identifier to a coordinate reference system, the "crs" member should have the following structure:

(i) The properties object should contain one member: "url", that specifies a URL for the spatial reference that can be dereferenced by the client.

(ii) An optional member, "type", is recommended, specifying the type of information available at the URL. This may be any string: suggestions are "proj4", "ogcwkt", "esriwkt", though others can be used. Applications may use this "type" member to determine the type of information that is available at the URL.

(iii) The specification does not offer any information on how to convert this URL into a spatial reference system: use is intended to provide users the ability to define their references outside the EPSG namespace *only*.

Examples

Each of the examples below represents a complete GeoJSON object. Note that unquoted whitespace is not significant in JSON. Whitespace is used in the examples to help illustrate the data structures - though it is not required.

Geometries
Point
Point coordinates are in x, y order (latitude ,longitude for geographic coordinates).

{

 "type": "Point",

 "coordinates": [100.0, 0.0]

}

LineString
Coordinates of LineString are an array of Point coordinates.

{

 "type": "LineString",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

}

Polygon
Coordinates of a Polygon are an array of LinearRing coordinates (LineString coordinates where the first and last points are equivalent). The first element in the array represents the exterior ring. Any subsequent elements represent interior rings (or holes).

No holes

{

 "type": "Polygon",

 "coordinates": [

 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0
]]

]

}

With holes

{

 "type": "Polygon",

 "coordinates": [

 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]],

 [[100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2
]]

]

}

MultiPoint
Coordinates of a MultiPoint are an array of Point coordinates.

{

 "type": "MultiPoint",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

}

MultiLineString
Coordinates of a MultiLineString are an array of LineString coordinates.

{

 "type": "MultiLineString",

 "coordinates": [

 [[100.0, 0.0], [101.0, 1.0]],

 [[102.0, 2.0], [103.0, 3.0]]

]

}

MultiPolygon
Coordinates of a MultiPolygon are an array of Polygon coordinates.

{

 "type": "MultiPolygon",

 "coordinates": [

 [

 [[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]

],

 [

 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]],

 [[100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2]]

]

]

}

GeometryCollection
Each element in the geometries array of a GeometryCollection is one of the geometry objects described above.

{

 "type": "GeometryCollection",

 "geometries": [

 {

 "type": "Point",

 "coordinates": [100.0, 0.0]

 },

 {

 "type": "LineString",

 "coordinates": [

 [101.0, 0.0], [102.0, 1.0]

]

 }

]

}

Box
Coordinates of a Box are an array of two Point coordinates. The first element in the array represents the minimum corner point (minx, miny). The second element in the array represents the maximum corner point (maxx, maxy).

{

 "type": "Box",

 "coordinates": [[100.0, 0.0], [101.0, 1.0]]

}

Feature
A Feature is an object with a geometry and additional properties.

{

 "type": "Feature",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

}

Since a GeometryCollection is a geometry type, you can use one inside a Feature:

{

 "type": "Feature",

 "geometry": {

 "type": "GeometryCollection",

 "geometries": [

 {

 "type": "Point",

 "coordinates": [100.0, 0.0]

 },

 {

 "type": "LineString",

 "coordinates": [

 [101.0, 0.0], [102.0, 1.0]

]

 }

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

}

FeatureCollection
Each element in the features array of a FeatureCollection is a Feature object as described above.

{

 "type": "FeatureCollection",

 "features": [

 {

 "type": "Feature",

 "id": "id0",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

 },

 {

 "type": "Feature",

 "id": "id1",

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]

]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

 }

]

}

Same feature collection, with a member named "crs" to represent the coordinate reference system.

{

 "type": "FeatureCollection",

 "crs": {

 "type": "URL",

 "properties": {

 "url": "http://spatialreference.org/ref/epsg/2001/proj4/",

 "type": "proj4"

 }

 },

 "features": [

 {

 "type": "Feature",

 "id": "id0",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

 },

 {

 "type": "Feature",

 "id": "id1",

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]

]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

 }

]

}

Including additional members
GeoJSON allows additional members at any level in a GeoJSON object (as described in point 2 in the specification).

For example, if you are constructing a Feature type object, three members are required (named "type", "geometry", and "properties"). In addition to these three members, you may add any additional members. The example below adds a member named "foo" with the value "bar".

{

 "type": "Feature",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 },

 "foo": "bar"

}

If you are working with a data standard that uses namespaces, you can handle those by taking advantage of these extra members. For example, adding a member with the name "@namespaces" is valid in GeoJSON:

{

 "@namespaces": {"":"http://geojson.org/ns#"},

 "type": "Feature",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

 },

 "properties": {

 "prop0": "value0",

 "prop1": "value1"

 }

}

Additionally, since all unicode characters are allowed in member names, the following object (with a member named "atom:summary" is valid GeoJSON).

{

 "@namespaces": {"":"http://geojson.org/ns#", "atom":"http://www.w3.org/2005/Atom"},

 "@type": "atom:item",

 "type": "Feature",

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [100.0, 0.0], [101.0, 1.0]

]

 },

 "properties": {

 "atom:summary": "Some GeoJSON Content",

 "atom:description": "This content is also valid GeoJDIL."

 }

}

[image: image2][image: image3][image: image4]
�A point contains only one position, or else it is not a point.

�EPSG requires lat before long, as does almost all geodesic coordinate standards.

�Interpretation of representation is a real gotcha if you don't put it up front. Geometries are usually really infinite, but must have finite representations – this is the one realization that really makes things work the way they work.

�Again, you need to get this up front, since it is one of the main issues on rings that often get messed up.

�This same interpretation of all collections as unions is throughout geometry. It is the only way to make everything work. Simple features is more restrictive than this, but that is a mistake that really needs to be fixed eventually. Most vendors now realize that over restrictions on geometry are more confusing than going with the more general ISO 19107 model.

�This sort of stuff is second nature to most GIS programmer, but we cannot tell who is going to read this, so we need to include even that which we believe to be common knowledge.

�Boxes are really not geometry, but can be converted to one under the right circumstances. The problem is that in most cases, the elevation value is often ignored, making a box equivalent to an infinite chimney, not really useful in the 3D case. Whole earth indexing really requires the z's to be used as if the box were exactly that, a 3D box, not a 2D rectangle.

�What is going on here is that geometry is NOT special. It is a property like anything else, and may be present or not depending on the application schema and the feature involved. This is even more true when we start using feature containment hierarchies, where feature collections are typed and given properties of their own. .

�Hey, EPSG are notoriously consistent in being latitude, longitude.

Easting, Northing are okay basically because EPSG does that with UTM based projections.

�Before you start examples, you need to address the issue of complex properties, i.e. properties whose value is an object.

I think I understand the answer to that, but since the examples tend to be simple values, it is not clear without a more formal description.

�There is an issue here. In a right handed system this is counter-clockwise, in a left handed system, like lat-long, it is not.

For the rest of this, I'm going to skip orientation comments, since they depend heavily on the choice of CRS.

�Okay, I lied. One of these is backward. Since they are the only 2 rings of the same polygon, they must be oppositely oriented. Ergo, one of them is backwards, depending on CRS choice.

_1253350514.vsd
Geometry

Static Structure

Point

LineString

Polygon

GeometryCollection

MultiPoint

MultiLineString

MultiPolygon

1

-element

*

1

-element

*

1

-element

*

1

-element

*

Box

